Hibernus++: A Self-Calibrating and Adaptive System for Transiently-Powered Embedded Devices

نویسندگان

  • Domenico Balsamo
  • Alex S. Weddell
  • Anup Das
  • Alberto Rodriguez Arreola
  • Davide Brunelli
  • Bashir M. Al-Hashimi
  • Geoff V. Merrett
  • Luca Benini
چکیده

Energy harvesters are being used to power autonomous systems, but their output power is variable and intermittent. To sustain computation, these systems integrate batteries or supercapacitors to smooth out rapid changes in harvester output. Energy storage devices require time for charging and increase the size, mass and cost of systems. The field of transient computing moves away from this approach, by powering the system directly from the harvester output. To prevent an application from having to restart computation after a power outage, approaches such as Hibernus allow these systems to hibernate when supply failure is imminent. When the supply reaches the operating threshold, the last saved state is restored and the operation is continued from the point it was interrupted. This work proposes Hibernus++ to intelligently adapt the hibernate and restore thresholds in response to source dynamics and system load properties. Specifically, capabilities are built into the system to autonomously characterize the hardware platform and its performance during hibernation in order to set the hibernation threshold at a point which minimizes wasted energy and maximizes computation time. Similarly, the system auto-calibrates the restore threshold depending on the balance of energy supply and consumption in order to maximize computation time. Hibernus++ is validated both theoretically and experimentally on microcontroller hardware using both synthesized and real energy harvesters. Results show that Hibernus++ provides an average 16% reduction in energy consumption and an improvement of 17% in application execution time over stateof-the-art approaches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring Energy Efficient State Retention in Transiently-Powered Computing Systems

Batteries have traditionally been used to power embedded electronic devices. However, requirements such as a long lifetime, low cost, andweight, pose significant challenges to battery-powered systems. Energy harvesting offers the potential for embedded systems to operate without batteries. Nonetheless, harvesting has been traditionally coupled with large energy buffers such as supercapacitors t...

متن کامل

Resonant frequency of bimorph triangular V-shaped piezoelectric cantilever energy harvester

The concept of “energy harvesting” is to design smart systems to capture the ambient energy and to convert it to usable electrical power for supplying small electronics devices and sensors. The goal is to develop autonomous and self-powered devices that do not need any replacement of traditional electrochemical batteries. Now piezoelectric cantilever structures are being used to harvest vibrati...

متن کامل

RELIABILITY-BASED DESIGN OPTIMIZATION OF COMPLEX FUNCTIONS USING SELF-ADAPTIVE PARTICLE SWARM OPTIMIZATION METHOD

A Reliability-Based Design Optimization (RBDO) framework is presented that accounts for stochastic variations in structural parameters and operating conditions. The reliability index calculation is itself an iterative process, potentially employing an optimization technique to find the shortest distance from the origin to the limit-state boundary in a standard normal space. Monte Carlo simulati...

متن کامل

Embedded Memory Test Strategies and Repair

The demand of self-testing proportionally increases with memory size in System on Chip (SoC). SoC architecture normally occupies the majority of its area by memories. Due to increase in density of embedded memories, there is a need of self-testing mechanism in SoC design. Therefore, this research study focuses on this problem and introduces a smooth solution for self-testing.  In the proposed m...

متن کامل

A New Structure for Direct Measurement of Temperature Based on Negative Temperature Coefficient Thermistor and Adaptive Neuro-fuzzy Inference System

Thermistors are very commonly used for narrow temperature-range high-resolution applications, such as in medicine, calorimetry, and near ambient temperature measurements. In particular, Negative Temperature Coefficient (NTC) thermistor is very inexpensive and highly sensitive, whose sensing temperature range and sensitivity are highly limited due to the intrinsic nonlinearity and self-heating p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE Trans. on CAD of Integrated Circuits and Systems

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2016